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1.0 Introduction 

 

Provectus Robotics Solutions Convolutional Neural Network (PRSNet) is a framework of classes and 

functions based off of Darknet/Yolo network by PJ Reddie [1]. It was designed and developed to detect 

people and vehicles in a video stream. 

 

Convolutional Neural Networks (ConvNets) specialize in processing data where spatial relationships 

are of importance [2]. Examples of input data would be images, speech recordings, and sentence 

structure. In each of these examples the sequence and positioning of the data is crucial to understanding 

differences between the inputs. 

 

For image analysis there are three challenges; classification, object detection, and segmentation [2]. 

Classification is the  ability to state what is in an image but not necessarily where the object is located 

in that image. Object detection states both where and what is an image. Segmentation determines the 

shape of the predicted object in the image, and is the most challenging of the 3. In all of these 

categories a predetermined set of objects are used, this is known as the network’s classes.  For example 

in PRSNet, the goal is to detect people and vehicles so the classes would be people, vehicles and other. 

Prior to processing, the input images are split by row and concatenated to form a tensor. This is done to 

improve computationally speed and efficiency. 

 

The basic premise behind convolutional neural networks is simple; pass data through the network and 

adjust parameters to decrease error. This process is iterated thousands of times until the parameters are 

being adjusted by very small amounts. This end result is known as convergence, and is the overall goal 

of ConvNets. To achieve convergence or something close to it, typically the structure or architecture of 

the ConvNet should contain multiple layers, denoted as the depth of the network. These layers usually 

consist of the following; Convolutional Layer, Activation Layer, Pooling Layer, Softmax Layer, and a 

Fully Connected Layer [2]. However PRSNet  has a few other layers; Batchnorm Layer, Route Layer, 

Reshape Layer, and Region Layer. 

 

2.0 Prior Research 

 

Before deciding upon using the YOLO convolutional neural network, other object detection methods 

and other ConvNets were considered. 

 

2.1 Haar Feature Extractor (Viola-Jones Detector) 

 

Commonly used in face detection, this method takes a training set of images of faces and random other 

images without faces, and extracts features from them [3]. For this extraction process, Haar Features 

are used (figure 1). 
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Figure 1: Example of Haar Features 

 

These features pass over the image subtracting the sum of pixels under the white rectangle from the 

sum of pixels under the black rectangle.  This process outputs thousands of features that are then 

filtered and selected using the Adaboost equation [3]. This equation finds the best threshold which will 

classify the faces to postive and negative by iterating over the training set and adjusting the features to 

have the smallest error rate. 

 

Once the Haar Features have been determined they are grouped into different detection stages to filter 

sections of an image. If that section passes the first stage of filters then then next stage is applied. This 

speeds up filtering of sections of an image that don’t have a face in it [3]. 

 

This method of detection works well for images of people facing forward and small variations in 

brightness. However this method is not very robust with respect to orientation or high contrast of 

brightness. Moreover, it produces a high amount of false positives. 

 

2.2 HoG-SVM 

 

HoG-SVM aims to be more robust in full body detection and slight changes in orientation and 

brightness [4]. Like the Haar Feature Extractor, HoG-SVM uses an edge filter to extract features from 

an image. This edge filter is also called a Sobel operator (figure 2) and consists of two vectors that slide 

over an image in the x and y directions. 

 

Figure 2: Sobel operator in the x (right) and y (left) directions 
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The output of these features are then used to calculated the magnitude and direction of the edge or 

gradient of a line in the image. The gradient and magnitude are then sorted into a histogram of oriented 

gradients (HoG) that describes the shape of the object. This process is performed on many images of 

people and other objects and are then trained using a support vector machine (SVM).   

 

A SVM maps these features in higher dimensions and determines a separating boundary [4].  Figure 3 

shows a basic concept of SVMs. 

Figure 3: Basic example of support vector machines 

 

Once a boundary has been determined, the detector can be tested on an image containing a person. A 

section of the image is processed and mapped against the boundary to determine what class the section 

falls within. Another section a few pixels over is then processed and this continues until the entire 

image has been evaluated. This procedure of evaluating sections of an image at at time is known as a 

sliding window. 

 

Although HoG-SVMs are good at detecting people in an image, they produce a high amount of false 

positives and struggle with changing orientations and obscured views of people. Additionally 

determining the right tuning parameters is very difficult for a dynamic range of backgrounds and 

weather conditions. 

 

2.3 AlexNet 

 

AlexNet is the one of the first breakthrough convolutional neural networks. It performed incredibly 

well compared to other traditional computer vision classifiers at the 2012 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [5] and began a deep-learning revolution. Compared to previous 

ConvNets, such as LeNet, AlexNet is much larger and includes convolutional layers stacked on top of 

each other. 
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AlexNet and many other convolutional networks since, such as GoogLeNet, VGGNet and ResNet, 

have all shown to be amazing classifiers even outperforming humans in some instances, but 

unfortunately are unable to perform object detection with realistic speeds. 

 

2.4 Region-Convolutional Neural Network (R-CNN) 

 

A few years after AlexNet , with the advance in computing capabilities in GPUs, R-CNNs were 

developed to deal with object detection. They essentially propose regions of interests using lower level 

detectors prior to passing the information into a ConvNet. There are three papers which build off of 

each other, improving accuracy and speed; R-CNN, Fast-R-CNN, Faster-R-CNN [6]. 

 

However a few problems limited R-CNNs from being used. They are unfortunately too slow at 

inference time compared to YOLO. Training the data is a difficult process resulting in inconsistencies. 

Finally, the region proposal process limits the network in detecting complex objects. 

This research ultimately led me to the Darknet framework and YOLO convolutional neural network 

which PRSNet is based off of. YOLO (You Only Look Once) is able to detect objects in real time and 

scores a high value of 76.8% mean average precision (mAP), a measurement classifiers and object 

detectors are evaluated by. 

 

3.0 Layers 

 

As stated earlier, a convolutional neural network consists of multiple layers. The arrangement and use 

of each layer construct the overall architecture of the network. The output of each layer is known as an 

activation map and acts as the input to the layer after it. In this manner, the initial input data is 

propagated through the entire network, where its is manipulated to determine its final outcome. Before 

this is possible, the network must first be trained to learn what objects are. In this process the data is 

propagated through the network, an error is calculated, which back propagates through the network and 

updates all of it’s parameters. Commonly when discussing the size of convolutional neural networks 

only the convolutional layers are considered. This is because all the other layers act as supporting 

layers to the convolutional layer. For instance in PRSNet there are 73 layers but only 19 of those layers 

are convolutional layers, so the network is considered to have a size or depth of 19. The following 

sections will delve deeper into what each of these layers do that make this incredible concept possible. 

 

3.1 Convolutional Layer 

 

Convolutional Layers are by far the most important layer. They consist of filters or kernels that pass 

over the input data, in this case an image, and extract important features from the image [2]. The 

process of these filters passing over the image is called convolution. 

 

An image is represented by pixels which have values from 0-255. In the figure below this is 

represented with pixel values of 0-1 for simplicity. A colour image has three channels; blue, green, red 

all with a matrix of pixels. 
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Figure 1: image of cat represent by pixel value of 0-1 

 

Like images, filters are a matrix of values as well. Filters vary in size and stride, but typically remain 

square. Figure 2 shows the process of an a colour image with three channels being convoluted by two 

filters. In this example Filter W0 and W1 have a size of 3x3 and a stride of 2. Since there are 3 input 

channels, each filter has to match it and thus have a depth of 3 channels.  For example in PRSNet the 

first convolutional layer outputs 32 channels, receives 3 channels, has a size of 3 and a stride of 1. 

There would then be 3 x 32 x 3 x 3 filter values.  Additionally before convolution , in order to maintain 

size between convolutions, zero-padding is added around the edges of the input data. This can be seen 

in figure 2 as well. Throughout PRSNet, padding is used in convolutional layers.   

 

 
Figure 2: Input 

image being 

convoluted by two filters 

 



6 

When the filters pass over the input matrix, they perform the dot product between the filter and region 

of interest of the input channel. This is shown in figure 3.   

Figure 3: Dot product of two matrices 

 

The output of the dot product of each filter channel is then summed together with the bias of that filter. 

The filter then moves two spaces over (stride of 2) and performs the same process again. The output is 

represented by the following equation: 

 

𝑦𝑖,𝑗 = 𝑤𝑘 ⋅ 𝑥𝑖,𝑗 + 𝑏𝑘 

 

The values inside the filter matrix are known as weights. These values are set to random values at the 

beginning of training and are adjusted in the correction phase, also known as back-propagation, of the 

network. As stated earlier the goal is for the network to converge and reduce the amount of error as 

much as possible. However, this is a very difficult task to achieve, and many steps are taken to prevent 

divergence [2]. One of them is choosing an appropriate starting range for the weights. For PRSNet,  the 

initialization bounds of the weights is chosen using the “He Normal Initialization Equation” [7]. This 

initialization practice was made popular in ResNet [8] and helps prevent the weights from either 

exponentially increasing or decreasing with every correction, which both lead to divergence. In the 

paper “Delving Deep into Rectifiers,” where He Normalization is first announced, the authors state the 

variance of weights to be: 

 

 Var(w(i))=2 / ni. 

 

Where w(i) are the weights of layer i and ni
 is the input of layer i computed as: 

 

𝑛𝑖 = 𝐾2 ∗ 𝐶 

 

 With K being the kernel size and C representing the number of input channels. 

 

This equation helps not only reduce divergence but also speed up convergence [8]. Moreover, another 

significant aspect of “He Normal Initialization” is that it takes into account the use of Rectified Linear 

Units (ReLU) [7], a function that is used after convolutional layers in PRSNet and is discussed later in 

this document.   

 

Alternatively, it is also common practice to use pre-trained weights of other networks as a starting point 

[2]. Regardless of what objects the network was trained on, the first couple of layers of every network 

are similar, each detecting edges, contrast in colours and brightness. These pre-trained weights will 

typically replace the first couple of layers of a network, with all other layers being initialized with He 

Normal Initialization or another weight initialization equation.   
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3.1.1 Back Propagation 

 

Once the image or input data has passed through the network an error value is calculated at the end of 

the network. The error or loss function is stated as: 

 

𝐽(𝑤) =
1

2
∗ (𝑦𝑖 − ∑𝑤𝑖 ∗ 𝑥𝑖)

2 

 

This calculation is done in the Region Layer of PRSNet which will be discussed further in the Region 

Layer section. Once the error is calculated, it is back-propagated through the network so each 

convolutional layer is able to update their weights and bias values. 

 

Traditionally the updated weights are calculated using Gradient Descent (GD) [9], where the loss 

represented by J(w) is plotted against the weight value shown in figure 4. 

 

Figure 4: Simple graph representing Gradient Descent 

 

The slope or gradient of J(w) represented as ∇J(w), would then predict the direction in which the 

weight value should change. The equation for GD is: 

 

𝑤𝑓 = 𝑤𝑗 − α ∗ 𝛻𝐽(𝑤𝑖) 

 

Here, α represents the learning weight, which acts as a scaling factor for each update. 

 

Unlike GD which computes the gradient of the loss function for the entire training data set, Stochastic 

Gradient Descent (SGD) updates parameters/weights for each training example [9].  The equation for 

SGD is: 

 

𝑤𝑗 = 𝑤𝑗−1 − α ∗ 𝛻𝐽(𝑤𝑗−1, 𝑥𝑖 , 𝑦𝑖) 

 

where i represents each image and j represents each iteration. This is a much faster and more memory 

conservative approach. However, since SGD performs frequent updates with high variance, it can cause 

the objective function to fluctuate heavily and converge at a local minimum as opposed to a global 

minimum [9], as shown in figure 5. 
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 Figure 5:  SGD converges at local minimum as opposed to global minimum 
 

To combat this problem, Mini-Batch Gradient Descent (MBGD) takes the positives of both GD and 

SGD and combines them. MBGD takes a batch of images, 64 in the case of PRSNet, and computes the 

gradient of the loss function after each batch. This reduces the variance of parameter updates, leading 

to more stable convergence, while also keeping the efficiency of SGD, and  obtaining a global 

minimum. MBGD is represented as: 

 

𝑤𝑗 = 𝑤𝑗−1 − α ∗ 𝛻𝐽(𝑤𝑗, 𝑥𝑖:𝑖+𝑛, 𝑦𝑖:𝑖+𝑛) 

 

where n represents amount of images in a batch. 

 

Adaptive Moment Estimation (Adam) Optimization builds off of these concepts as well as other update 

optimization equations to speed up convergence and improve global minimum achievement [10]. Adam 

computes the adaptive learning rates for each parameter. It stores an exponentially decaying average of 

past gradients and square gradients represented by m(t) and v(t). In other words m(t) is an estimate of 

the first moment or mean and v(t) is an estimate of the second moment or uncentered variance. These 

variables are calculates as: 

 

𝑚𝑡 = Β1 ∗ 𝑚𝑡−1 + (1 − Β1) ∗ 𝑔𝑡 
𝑣𝑡 = Β2 ∗ 𝑣𝑡−1 + (1 − Β2) ∗ 𝑔𝑡

2 

 

where t represents each iteration, gt represents the gradient of the previous layer, B1 equals 0.9 and B2 

equals 0.999. m(t) and v(t) are initialized as zero vectors, but because of this, it was observed that they 

are biased towards zero [10]. This is counteracted by computing bias corrected first and second 

moment estimates: 

 

𝑚�̂� =
𝑚𝑡

1 − Β1
𝑡  

𝑣�̂� =
𝑚𝑡

1 − Β2
𝑡  

The parameters are then updated as: 

 

𝑤𝑗 = 𝑤𝑗−1 −
α

√𝑣�̂� − ε
∗ 𝑚�̂� 
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where ε equals 10-8. Adam Optimization is the algorithm used to update weights and bias values in 

PRSNet. 

 

3.2 BatchNorm Layer 

 

BatchNorm or batch normalization is a layer that follows the convolutional layer and acts as a 

replacement to adding the bias values after convolution [11]. BatchNorm normalizes the data in the 

entire batch; speeding up convergence and reducing covariance shift [12]. Covariance shift is a 

phenomenon that occurs between training and testing data. For instance, lets say PRSNet was trained 

mostly on images of black cats and a bunch of images that were not cats. Then when testing on images 

of orange cats, the network would predict very poorly. This is because the distribution of training 

images were skewed to mostly detect black cats and would fail when a slightly shifted distribution of 

cats is used for testing. Batch normalization aims to centre the input distribution. By doing this higher 

learning rates can be used, because each  update wont fluctuate the error so drastically [12]. Moreover, 

batch normalization helps with over-fitting because it regularizes the data [11].    

 

To achieve this improvement, batch normalization includes four trainable parameters; scale, shift, 

running mean and running variance. Running mean μ(N) and running variance σ2(N) are vectors that 

learn to represent the mean and variance of an entire data set (N) not just each mini-batch (B). 

 

The scale and shift parameters are applied after normalizing. Since normalizing each input of a layer 

constrains what the data can represent, the scale and shift parameters adjust the normalized output to 

properly represent the distribution of the input data. For instance if a sigmoid curve (figure 6) were to 

be normalized, the output would be constrained to the linear section of the curve [12]. To address this, 

the scale and shift parameters make sure to represent the identity of the data. 

 
Figure 7: sigmoid curve, the middle section of the curve is practically linear 

 

 

The process of training a batch normalization layer is shown in figure 8 [11]. 
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Figure 8: Equations to train batch normalization parameters 

 

Batch normalization training and inference (testing) vary since during testing, multiple images are not 

processed but rather just 1 image. This is where the learnt values of the running mean and running 

variance are used. This is shown in figure 8, Algorithm 2, step 11; with running mean = E[x] and 

running variance = Var[x]. 

 

3.3 Activation Layer 

 

The activation layer follows the batch normalization layer or in the absence of a batch normalization 

layer, the convolutional layer. An activation is a non-linear function that acts on each input value 

separately [13]. Activation functions mimic the neurons firing or activating in a brain. They introduce 

non-linear properties to a network, to help model data more accurately. For instance, without activation 

functions, the output signal of a network would be a simple linear function, and wouldn’t be able to 

model complex systems [13].   

 

There are 4 different activation functions available in PRSNet. 

 

3.3.1 Logistic or Sigmoid Activation 

 

This activation function takes a number and squashes it into a range of 0 to 1 (figure 9). This activation 

is commonly used in the final layers to constrain the output to a probability of 0 to 100 percent. There 

are some drawbacks of using this function however. Since the region of the sigmoid curve is nearly flat 

at 0 and 1, the derivative is approximately zero, and thus during back propagation the weights don’t 

change significantly in these regions. This problem is known as the vanishing gradient problem for 

activation functions. Additionally, the exponential function in the sigmoid activation equation is 

computationally expensive and slows down the network [13]. 
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Figure 9: Logistic (sigmoid)  activation curve and function 

 

 

 

3.3.2 ReLU Activation 

 

Rectified Linear Unit or ReLU is one of the most popular activation functions. It is simply stated as: 

 

 

Figure 10: Rectified Linear Unit function and graph 

 

It thresholds negative values and propagates positive values. It has been proven to improve 

convergence up to 6 times that of the Tanh activation function [14]. The ReLU activation function 

attempts to solve the vanishing gradient problem in the positive region, while still remaining non-linear 

due to the threshold bound at zero. Moreover, the function dilutes each activation, speeding up and 

stabilizing convergence [14].  However there are still drawbacks of the ReLU activation; the outputs 

are not zero-centred and the vanishing gradient problem still remains when x < 0. 
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3.3.3 Leaky ReLU Activation 

 

This activation function attempts to solve the vanishing gradient problem of ReLU. As shown in figure 

11, when x < 0, it is multiplied by 0.01 and propagated through the network.   

 

Figure 11: Leaky Rectified Linear Unit function and graph 

 

Leaky ReLU’s tend to be inconsistent in their results and are still being researched [13]. This 

inconsistency is currently unclear. Leaky ReLU’s are used in the current PRSNet architecture. 

 

3.3.4 Softmax Activation 

 

The Softmax activation is a generalization of the logistic function that squashes down a set of values to 

a range of [0, 1]. The function outputs the probability of a value compared to all the other values in the 

set and is a form of normalization [13]. This is represented by the following equation: 

 

 

The softmax activation is used at the end of the network as it able to calculate the probability of each 

class based off of all the class values. 

 

3.4 Pooling Layer 

 

Pooling layers typically follow an activation layer, but are not used after every activation layer. Pooling 

layers act as a down-sampling layer and are essential in PRSNet. The reasoning behind this layer is to 

decrease memory size and increase speed of the network [1]. Furthermore, the layer also reduces over-

fitting in spatial positioning [2].   

 

There are two different types of Pooling Layers; Average Pooling and Max-Pooling. Average pooling 

takes the average of all the values in a certain window and propagates that further. Max-pooling, the 

more commonly used type, takes the maximum value within a certain window. This is shown in figure 

12: 
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Figure 12: example 

of Max- pooling 

with a window 

size of 2x2 and a 

stride of 2 

 

In this example, 

a window 

size of 2x2 is 

used, where 

the largest 

value in this 

window is 

chosen as the 

output. The 

window then moves two units over where the process is repeated. In PRSNet Max-pooling layers are 

used to down-sample a 416x416 image to 13x13. Every Max-pool layer has a size of 2x2 with a stride 

of 2, thus reducing the input size by a factor of 2. 

 

3.5 Routing Layer 

 

The Routing Layer acts as a transport for finer grained features. The layer essentially copies the output 

of a layer earlier in the network and adds it later to the network. This layer helps emphasize earlier 

features later in the network and helps prevent the propagated values from decaying [1][8]. However, 

this pass-through feature takes a considerable amount of memory as the whole activation map of a 

previous layer is copied. 

 

3.6 Reshape Layer 

 

Reshape or Reorganize layer is typically used along side the routing layer. Like Max-pooling, the 

Reshape Layer reduces the spatial size, but unlike max-pooling it maintains the extra data as channels. 

This process is show in figure 13. 

 

Figure 13: Example of a Reshape Layer 

 

As shown in figure 13, the input matrix is a single channel of size 4x4, and is restructured as 4 channels 

with a size of 2x2. In this example the reshape layer has a stride of 2. 

 

3.7 Region Layer 
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The region layer is the final layer of PRSNet and is based off of the region layer in the YOLO object 

detector [1]. This layer shapes the neural network from being a classier to being an object detector. As 

stated earlier in this document the loss function is calculated in this layer but in a more complex way 

than a typical convolutional neural network classifier.   

 

The convolutional neural network down-samples a 416 x 416 image to 13 x 13 pixels. This can be 

represented as dividing the input image into 13 x 13 feature boxes as shown in figure 14.   

  

Figure 14: Representation of input image divided into 13 x 13 feature boxes 

 

Each of these feature boxes predicts 5 bounding boxes just for their cell. Each of those bounding boxes 

predict five coordinates and a confidence value, p(C), for each class.  The five coordinates consist of a 

centroid position (bx, by), bounding box size (bw, bh), and object probability (p(O)). The object 

probability states how certain it is that an object is within the feature box regardless of what object it is. 

The class probability or confidence states how certain that that specific object is within that cell if an 

object exists there. The overall layout is shown in figure 15. 

 

 

Figure 15: Region Layer channel structure 

 

In the PRSNet architecture the input dimensions of the region layer is 13 pixel width x 13 pixel height 

x 5 bounding boxes x ( 5 coordinates + 20 classes) for an overall size of 13 x 13 x 125. The region 

layer applies a logistic activation to bx,by to constrain them to a range of [0,1]. A logistic activation is 

also applied to the object probability in order to constrain the values to a probability of 0 to 100 
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percent. Moreover a softmax activation is applied to the class probabilities to determine which class is 

most likely within the bounding box. This process is the same for inference and training.   

 

3.7.1 Training in the Region Layer 

 

The region layer is what makes object detection possible in one forward pass and why YOLO is so 

unique [1]. However, you aren’t able to just add a region layer at the end of a trained convolutional 

network and expect it to detect objects. This is because object detection is trained into the network, by 

the way errors are determined and back propagated. 

 

The 125 channels that are taken as input are terrible at detection at the beginning of the training and are 

each taught to perform their predicting tasks. To speed up this process and maintain stability of the 

network, the first layers of the network are pre-trained on a classifier and are then trained on the object 

detector network [1]. A prediction of an object is calculated for each cell in each of the 5 bounding 

boxes and is checked against a labelled truth. If the prediction is wrong or if the network was not able 

to properly determine the location of the object, an error is calculated and stored in a error vector that is 

then back-propagated through the network. 

 

A good location is determined by having a high intersection over union (IOU) value (figure 16) and an 

accurate centroid prediction. 

 

Figure 16: Graphic demonstrating intersection over union calculation 

 

To improve IOU predicting, dimension clusters are used. Dimension clusters are essentially an estimate 

of common bounding boxes sizes within the entire training set. These sizes are determined prior to 

training by running k-means clustering on all the labelled bounding boxes [1]. K-means clustering is a 

type of unsupervised learning algorithm that relates data points to each other [15]. K represents the 

amount of clusters used to relate a data set. Each cluster acts as a centroid with respect to the other data 

points and the algorithm tries to minimize the distances from each centroid to all the other data points. 

This is demonstrated in figure 17. 
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Figure 17: Example of K-Means Clustering with K = 3 

 

The algorithm follows the following steps: 

Let X = {x1,x2,x3,……..,xn} be the set of data points and V = {v1,v2,…….,vc} be the set of centres. 

1) Randomly select ‘c’ cluster centres. 

2) Calculate the distance between each data point and cluster centres. 

3) Assign the data point to the cluster centre whose distance from the cluster centre is minimum of all 

the cluster centres.. 

4) Recalculate the new cluster centre using: 

 

where, ‘ci’ represents the number of data points in ith cluster. 

5) Recalculate the distance between each data point and newly obtained cluster centres. 

6) If no data point was reassigned then stop, otherwise repeat from step 3). 

The bx and by coordinates predict the centroid of a predicted object. With dimension clusters acting as 

good initial estimates, the bw and bh predictions adjust these dimension clusters to more precisely fit 

the predicted object. The object probability, p(O), then states how probable that this predicted object in 

this bounding box is actually an object.  If this predicted object is not actually an object an error is 

calculated. If there is an object in that location but the bounding box does not match up with the 

labelled bounding box an error value is calculated for the coordinate parameters; bx, by , bw, bh. If 

however, the model passes both of these checks, the predicted object is then compared to the actual 

labelled object, where an error value is calculated based upon the prediction. This process is iterated 
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over and over again until there isn’t anymore training data or the model converges. In this manner, the 

network learns to detect objects, accurately locate the centroid, fit an appropriately sized bounding box 

and then classify the type of object. 

 

3.7.2 Inference in the Region Layer 

 

In inference of the region layer the object probability is multiplied by each class probability for each 

feature box. If this product is higher than a set threshold and all other class probability products for that 

feature box, the prediction is added to a vector of other predictions. Essentially, the best prediction for 

each feature box is propagated further if it above a certain threshold. All of these predictions are then 

filtered through a non-maximum suppression algorithm. This algorithm discards multiple bounding box 

predictions of the same class in the same area.  This is shown in figure 18. 

 

Figure 18: Example of non-maximum suppression of bounding boxes predicting a face 

 

The bounding boxes are then displayed over the input image and the next frame or image is taken. 

 

4.0 Data Augmentation 

 

Data augmentation is the manipulation and distortion of in the input images. This vastly improves the 

robustness of the network and its ability to detect objects [16]. Additionally it provides more training 

data for the network to learn from. There are a few common data augmentation methods used in 

convolutional neural networks. 

 

4.1 Image Flips 

 

Flipping or mirroring images 50 percent of the time allows objects to appear on both the sides of the 

image and provides a different perspective for the ConvNet to model. 

 

4.2 Random Crops 

 

Randomly cropping a portion of the image allows the network to learn sections of an object, reducing 

over-fitting and improving the detection rate. 
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4.3 Colour Jittering 

 

Colour jittering alters the original input colour by a specified hue, saturation and gain. This distorts the 

input colour channels to account for a change in brightness and contract in testing. 

 

5.0 PRSNet Dependencies 

 

PRSNet uses multiple libraries to function. These libraries include: 

 

1. CUDA Toolkit 8 (Feb Release) 

2. CUDA Deep Neural Network Library (cuDNN) version 6 

3. OpenCV (core, highgui, imgproc) 

4. libxml2 

5. libconfig.h++ 

6. FFMPEG Library (avutil, avcodec, avformat, swscale) 

 

6.0 Next Steps 

 

Currently PRSNet is based off the YOLO architecture but there are a few implementations that can be 

done to improve the detection rate of the network. 

 

6.1 PReLU Activation  

 

Parametric Rectified Linear Units (PReLU) are generalized versions of Leaky ReLUs. This concept is 

demonstrated in figure 19. 

 

 
Figure 19: PReLU function and plot 

 

In this activation function the alpha parameter is learnt during the training phase of the convolutional 

neural network. They have been shown to improve the mean average precision of a network by 1 

percent [14]. However, this improvement comes at a marginal computation cost during training. 
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6.2 Recurrent Neural Networks and LTSM 

 

One of the problems with ConvNets is that they don’t have any prior knowledge of the previous 

detection. This is a problem in video analysis or real time detection as the network can miss a detection 

every couple frames. Recurrent Neural Networks (RNN), or more precisely Long Short-Term Machines 

(LTSM) solve this problem. They work in a similar manner to ConvNets but instead of just propagating 

the output to the next layer in the network, they also store this output to be analyzed again. A simple 

RNN is shown in figure 20. 

 

Figure 20: Example of a one layer Recurrent Neural Network (right) and the same layer expanded out (left) 

 

ROLO is an adapted version of the YOLO neural network with an LSTM network running at the end to 

track previous detections [17]. 

 

6.3 Generative Adversarial Network (GAN) 

 

Generative Adversarial Networks are the ultimate form of data augmentation [16]. GANs are taught to 

create similar images of objects trained on a network [18]. They work against the original network to 

attempt to trick the network into not detecting an object that is actually there. They are an incredibly 

interesting concept that is still being researched but trials have shown to improve a networks ability to 

detect objects without labelling images, thus becoming a form of unsupervised learning. 

 

7.0 Conclusion 

 

Convolutional neural networks are at the forefront of machine learning and have revolutionized the 

field of image classification and object detection. Although the use of each of the layers is understood, 

the overall architecture of each network is still explored in order to obtain a sufficient model of the 

data. Further improvements in activation functions and weight optimization will improve the efficiency 

and accuracy of networks in the future. Moreover, advances in GPUs will allow for deeper and more 

complex networks that will benefit the entire artificial intelligence field. PRSNet will therefore 

continue to improve and is why convolutional neural networks were ultimately chosen as the best 

object detector to use. 
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