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Executive Summary 

The Integrated Autonomous Vehicle (IAV) project is a new 4th year capstone project created this year and is part of the 

Mechanical and Aerospace Department at Carleton University. The overall goal of the project is to create an 

autonomous shuttle to transport students around the Carleton campus. This goal must be broken down into smaller, 

more achievable goals for teams to meet each year. This year’s objective it to create a prototype vehicle by re-engineering 

an old buggy frame and equipping it with the necessary sensors and software for it to be able to drive autonomously in 

ideal conditions.  An important aspect of robotics is the software implemented on it. Through the developed software, 

the controls and logic of the vehicle are realized. The focus of this report is the software integration completed this year 

on the IAV prototype, more specifically the framework, system architecture, and control system that will allow the 

vehicle to smoothly operate.  

Highlights 

This report discusses five aspects of the project:  

1. The virtual simulation of the vehicle 

2. The network and messages between the various software components of the system  

3. The software system architecture  

4. The control system  

5. The device drivers developed for the hardware components 

This is followed by a conclusion and a section discussing future work and improvements of the system. Additional work 

completed is also included at the end of the report.  

 

 

 

 

 

 

 

 

 

 



ENGINEERING DESIGN PROJECT REPORT 3 

Introduction 

Software integration is the process of aggregating diverse sub-systems to combine and form one coherent multi-

functional system [1]. Within this project, software integration has played a key role in the overall design and formation 

of the system components and has largely influenced the outcome of the final product. In this manner, software and the 

software integrator act as the glue between the other groups within the project. Moreover, within such a complex system 

such as an autonomous vehicle, software integration also incorporates the hardware and sensors used, and thus evolves 

into a role of a system integrator with a large focus on software integration. Therefore, in the later half of this report, the 

software developed will also be discussed in relation to the hardware components used.  

IAV Simulator 

Testing is critical to software development especially in a high-risk environment such as that associated with an 

autonomous vehicle. A simulator or simulation program offers a method to test changes and new features in a virtual 

space, lowering the risk of an accident occurring.  

The IAV simulator was developed to do just that, to test algorithms developed on the vehicle in a virtual space. This also 

drastically speeds up the time required to develop software for the vehicle, as it can be tested without the need for a 

physical vehicle. However, the simulation operates in ideal conditions and testing in a physical environment is still 

required to properly examine the algorithm due to the noise related to sensors.   

The simulation was built on Webots Simulator, which is a complete development environment to model and program 

robots [2]. Within the simulation the vehicle is split into three parts; the buggy model, the sensors added to it, and the 

software controller to function the robot. Additionally, real world maps with associated GPS data can be imported into 

the simulator to test the robot in a familiar space. This was done with a portion of the Carleton campus since the vehicle 

will inevitably be tested there, as shown in Figure 1. 

 

Figure 1 Simulated map of the Carleton University Campus 

Buggy Model 

A model of the buggy frame was uploaded into the simulator using a previously created CAD model as show in Figure 2. 

It was determined that the buggy with all the sensors, motors, batteries and a single person, would have a design weight 

of 700 lbs. The vehicle in the simulator was thus also modelled to weigh 700 lbs. Hinge-joints were incorporated on 

either side of both axes to model the rotation of the wheels. These joints can be actuated through the robot’s controller 
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software and are comparable to motors. Unfortunately, in the simulator it is difficult to model Ackermann steering and 

currently the simulator incorporates skid steering. This should be fixed in the future years, as the real buggy has been 

modified to allow for Ackermann steering. Currently, the rear wheels in the simulator act independently replicating a 

split axle design, which is currently included in the real buggy.  

 

Figure 2 Buggy Simulator Model 

The simulator includes a physics module which more accurately models the dynamics of the vehicle. This in turn creates 

noise in the environment, due to vibration from rough terrain and slip in the vehicle’s wheels. The noise produced is 

important when developing an algorithm which relies on encoder data from the wheels or images from a camera, as both 

these sensors will be affected. Friction is also introduced into the environment with the physics node. The coefficient of 

friction has currently not been adjusted but it can be tuned to improve the overall model of the system. To do this, the 

friction of the rubber wheels and asphalt road would have to be determined.  

Sensors  

The simulator includes all 6 different sensors used on the real vehicle; LiDAR, stereo cameras, two monocular cameras, 

GPS, IMU and rotary encoders.  The sensors are included as nodes in Webots, making it quite easy to model. Each 

sensor can be accessed through the robot’s software controller.  

The LiDAR publishes an array of range values with each row representing a planar scanline and each column 

representing the range at that angular location. For instance, if a LiDAR published a range every 5 degrees with a 

horizontal field of view of 40 degrees and vertical field of view of 10 degrees, the data outputted could be represented by 

Table 1. The columns of the table represent the horizontal angular values, while the rows represent the vertical elevation 

of the range.   

Table 1 LiDAR Data Example 

 -20° -15° -10° -5° 0° +5° +10° +15° +20° 

+5° 1.1 1.1 1.2 4.0 4.0 0.5 3.0 3.1 2.0 

0° 1.0 1.0 1.1 3.8 3.8 0.4 2.9 3.0 1.9 

-5° 1.1 1.1 1.0 2.0 0.4 0.5 3.1 3.0 0.5 

 

The LiDAR data is stored in a dynamic array represented as a multidimensional vector in C++. This is to allow for the 

array dimensions to be changed instantly if a different lidar, which publishes a different amount of data, is used.  
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The camera publishes image data as an array of pixels. The resolution of the camera can be specified in the camera node 

embedded in the robot node of the simulator. The pixel values are represented by 3 colour values; red, green, and blue, 

which are adjacent to each other in the array. Therefore, if an image has a resolution of 1280 x 720, there would be 3840 

x 720 values in the array. Similar to a camera, the stereo camera also publishes an array of pixels but with an additional 

channel representing depth. So instead of 3 colour values representing a pixel there would be 4 values; 3 for colour and 1 

for depth. Both sets of data are stored in dynamic arrays, like the ones used for the LiDAR data.  

The simulated GPS publishes 4 values; longitude, latitude, altitude and GPS speed. The coordinates are published as a 

vector with 3 indices, with each index representing one of the coordinates. The GPS speed is published as a single 

precision (float in C++) value. The IMU publishes data similar to the GPS, but with each index representing either the 

roll, pitch or yaw of the vehicle.  

Finally, the rotary encoders publish the rotation of the wheels represented as a number of ticks, with one full rotation 

represented as 1024 ticks. This data can be used to estimate the amount of displacement of the vehicle.    

Software Controller 

The controller is the software interface to the robot developed in the simulator. It has access to all the sensors 

incorporated on the robot and provides control commands to the robot’s actuators, in this case the wheels. The 

controller is written in C++, which is a commonly used programming language for robotic systems. The controller is 

broken up into different modules, known as classes in C++, which focus on one aspect of the robot. From a high-level 

perspective there are 3 main classes; System Manager, Sensor Manager and Controls Manager. The System Manager is 

the highest level in the controller. It manages the other two classes and sets up all the processes and messages related to 

the program. The Sensor Manager receives and stores all the data from the simulated vehicle. The Controls Manager 

deals with everything related to the motors and encoders. Commands are sent to the Controls manager to move and 

steer the vehicle. All the code for these classes is included in the appendix section of this report.  

Software Utilities  

Three utilities were created to display the data produced in the simulator from three different sensors. These utilities 

were made to act as an example of how to receive data from the simulator. The first utility displays the middle scanline 

of the Lidar and shows it as a 2D planar view. The second, prints out the GPS data to a terminal. The third prints out 

IMU data to a terminal. The utilities can be seen in Figure 3. 

 

Figure 3 Simulator Utility View 
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System Network 

As it is the first year of the project, it is crucial to lay a strong foundation that can be built upon in further years. The 

designed system should have the following key features:  

1. Expandable  

2. Adaptable 

3. Resistant to Failure  

4. Real Time Operation 

5. Concurrent Operation  

Expandability focuses on the ability of the software system to grow and incorporate new features and more advanced 

levels of autonomy. The system must be designed in such a way that future students can add to the software while also 

taking advantage of the current capabilities.   

Adaptability addresses the flip side of this, taking away or changing a portion of the current capabilities without 

remaking the entire system. This allows for the system to be adapted in future years to allow for new designs and 

iterations.  

The system must also be resistant to failure and in the occurrence of failure, it must act in an appropriate manner. The 

software system must not completely shutdown if a sensor or software component fails.  

Real time operation and concurrent operation address a similar aspect of the system. Essentially, all the software 

components must run fast enough to handle issues occurring in real time in the environment it is acting in. In order for 

such a complex system to accomplish this, multiple software components must run in parallel or at the same time, thus 

the system must allow for concurrent operation.  

All the above features are answered with the use of a communication network. A communication network allows for 

multiple programs running on a computer to communicate with each other. Additionally, the network can be expanded 

to communicate with outside devices and computers, allowing for communication between multiple vehicles in future 

years.  

By sharing data between multiple components running on the same computer, real-time and concurrent operation can 

be achieved.  Additionally, this adds a level of security to the overall system, increasing its resistance to failure. If a 

component were to fail then the overall system would not fail with it, instead it would detect the fault and handle the 

error in a safe manner. Furthermore, components can be changed or added within the system without affecting the 

operation of other components allowing for expandability and adaptiveness of the overall software system.  

The communication network used within this system is called a Lightweight Communications and Marshalling (LCM) 

network. 

LCM Network   

LCM is a software network used to publish and receive messages [3]. More specifically it is a set of libraries and tools for 

message passing and data marshalling. The reason it was selected was because it is targeted at real-time systems where 

high bandwidth and low latency are critical. These are two very important factors within an autonomous vehicle. There 
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is a need for high bandwidth due to the amount of data published from all the sensors onboard the vehicle. Likewise, the 

latency related to messages must be as low as possible due to the critical environment the vehicle will operate in.  

LCM provides functions to publish and listen to messages on an Internet Protocol (IP) Network. The messages are in 

the form of User Datagram Protocol (UDP) messages. UDP is a connectionless communication model and does not 

require a port to receive the messages on the other end. Furthermore, it does not perform any handshaking protocol to 

confirm that the messages were received. Although this can lead to unreliability in the network, it avoids overhead in 

processing and decreases latency, making it more suitable for real-time applications. The unreliability in the messages can 

be resolved by error-checking within the program. LCM also provides functionality to encode and decode all the data.  

Figure 4 describes the process of publishing and receiving a message from one software program to another. Within the 

IAV system, an example of this would be the Sensor Manager, represented as Program 1, publishing LiDAR data to the 

Obstacle Detection component, represented as Program 2. The data is encoded as a UDP message which is then 

published to an IP Network. Concurrently, the Obstacle Detection component is listening into the IP network for 

LiDAR data. Once it hears that data has been published it then receives that UDP message and decodes it back into 

LiDAR data.   

 

Figure 4 LCM Message passing 

The LCM network lays the foundation for the system architecture by allowing for communication between its associated 

software components. 

Software System Architecture 

One of the most important parts of a system is how it comes together. Typically, when developing a complex system like 

an autonomous vehicle the system architecture is planned and laid out. Like all designs, this goes through an iterative 

process before being finalized.  

Initial Design 

The initial design followed a flow pattern, which provides hierarchy to each component. This system architecture is 

shown in Figure 5. The System Controller is the highest level of the system, only being exceeded by inputs from the user 

via an interface such as a gamepad/joystick or graphical user interface (GUI). The System Controller would then manage 

the 3 main autonomous components of the system; the Path Planner, Path Follower and Pose Estimator.  

1. The Path Planner is responsible for planning the vehicles route. It receives a destination and determines the 

best possible path to take to get there. This module would also deal with rerouting the path if an object were to 

get in the vehicle’s way.  

2. The Path Follower component would be responsible for following the path set out by the Path Planner. It 

would constantly monitor the data published by the sensors to determine if the path generated is safe to take 

and that no objects move in front of it.   

3. The Pose Estimator works together with the Path Planner and Path Follower to give the best possible estimate 

of the vehicles position and heading in real space. This component fuses data from the GPS, IMU and 
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encoders to reduce positional error in the system. Additionally, it corrects the vehicles position to stay within a 

determined lane.  

 

Figure 5 Initial System Architecture 

The components below these previously described ones, each interpret the data gathered by sensors of the surroundings 

of the vehicle.   

1. The Object Detection module uses a convolutional neural network and a stereo camera to determine what kind 

of objects appear in front of the vehicle.  

2. The Obstacle Detection component uses LiDAR data to find any kind of obstacle around it. The type of 

obstacle is unknown but is very reliable at detecting some kind of obstacle compared to the Object Detection 

component. Moreover, these components provide some redundancy within the system, if one were to fail.  

3. The Road and Lane Detection component detects the lane the vehicle must stay within. This is very important 

when driving on a public road. This data is used to correct for the vehicles position.  



ENGINEERING DESIGN PROJECT REPORT 9 

Finally, the last two modules are the Sensor Manager and Controls Manager components. As the name implies, they 

manage all the drivers and data associated with either the sensors or the motors. These components were mentioned 

earlier when discussing the simulator. 

Autonomous Process Logic Diagram  

Once an initial design had been created, a logic diagram was required to evaluate the flow between each component. 

Figure 6 shows the autonomous process with regards to each software component.  

A destination is sent to the route planner to plan the initial route the vehicle will take, similar to google maps providing 

directions. Waypoints are incrementally set within the planned route. This data is then sent to the Path Follower which 

tries to achieve each of these waypoints.  The Path Follower runs three components in parallel; lane correction, obstacle 

avoidance and traffic law following. Once the way point has been achieved safely, the vehicle then moves to the next 

Figure 6 Autonomous Process Logic Diagram 
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waypoint in the route. If there are no more waypoints, the route has ended, and the vehicle stops. Going through this 

process has caused the initial design of the system to change to incorporate the new modules shown in the diagram. 

Current Design  

The current system architecture design abandons the traditionally hierarchal approach to programming. Instead it 

packages each component into a subsystem, to allow for more parallelism in a complex system. The system is comprised 

of three main subsystems; vision, positioning and controls. Within each of these subsystems are the components and 

algorithms the other students in the project are developing. The whole system is called the Integrated Autonomous 

Vehicle System (IAVS) and is shown in Figure 7. 

 

Figure 7 Integrated Autonomous Vehicle System 

Everything within the red box has access to the LCM network. Therefore, messages can be quickly passed to and from 

each individual component. Everything outside of the red box is considered an external software component, which is 

an interface or driver for the system. The purpose of this is to simplify the system but also make it dynamic if more 

sensors or interfaces are added to it in the future. The manager components would just have to connect to a new driver 

in order to incorporate the new device.  

For clarity purposes the Controls Manager component was renamed the Motor Manager and the Path Planner 

component was renamed the Trajectory Planner.  
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Control System 

The control system highlights the logical flow between each software component associated with it. The flow chart is 

shown in Figure 8.  

 

Figure 8 Control System Flow Chart 

The Trajectory Planner component receives GPS map and road data from the Map Manager component which stores 

this data on file, so it is available off-line, similar to GPS navigators found in cars today. The Trajectory Planner uses this 

data along with its initial position, received from the Pose Estimator, to determine a path, represented as a list of GPS 

waypoints the vehicle must follow to get to its destination. This list is shown as {x’, y’, h’} which relate to the target 

easting and northing position and the target heading. This data is sent to the Path Follower component which fuses the 

data with a corrected position from the Lane Correction component and obstacles and objects, detected from the vision 

subsystem, that may be in the vehicles path.  

From the Path Follower component, a new adjusted target position is outputted to the Vehicle Controller component 

which also receives an estimate of the current position represented as {x, y, h} for easting, northing and heading. The 

Vehicle Controller component implements a unique feedback controller developed by Ryan Kidney and is further 

discussed in his report. The component outputs an angular velocity demand and position change demand to the motor 

and linear actuator respectively. These devices respond with their current readings, in the form of encoder data and 

potentiometer data.  

The Vehicle Controller than loops back to the path follower which repeats the process again for the following waypoint 

in the path.  

Device Drivers 

 A device driver is a software program that controls a hardware device that is attached to a computer [4]. Within the IAV 

system this includes all the sensors, the motor controller, and the linear actuator.  
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Motor Controller 

The motor controller used to actuate the ME1114 Motenergy Motor is a Sevcon Gen 4 Motor Controller [5] [6]. It is 

connected to the IAV computer, which is a Nvidia Drive AGX Computer, through a CAN-Bus line [7].  

Controller Area Network (CAN) 

Controller Area Network or CAN is a communication protocol which allows signals containing messages to be passed 

to multiple devices on the network [8].    

The line is represented electrically as nodes connected by two 20-gauge AWG wires; CAN-high and CAN-low. The 

connections are terminated at either end by 120-ohm resistors, as shown in Figure 9.  

 

Figure 9 CAN-Bus Electrical Diagram [9] 

The protocol allows for multiple nodes to be connected to the same bus, however in the IAV system there are only two; 

the computer and the motor controller. 

In order to properly communicate and read messages over the CAN-Bus line the Nvidia computer required a transceiver 

to interpret the changes in voltage. The transceiver is connected to CAN0_IN, CAN0_OUT, 3.3V, and GND on the 

computer as shown in Figure 10 and Figure 11.  

 

Figure 10 Nvidia Xavier Pin Out [10] 



ENGINEERING DESIGN PROJECT REPORT 13 

 

Figure 11 Transceiver Connection Diagram [10] 

The above figure shows the connection for two transceivers, but currently for this project only one is required. In future 

years the second can be utilized for new CAN enabled devices.  

CANopen 

The Sevcon Gen 4 Motor Controller used in the IAV system utilizes a high-layer protocol called CANopen [6]. 

CANopen is a higher layer protocol based on CAN-Bus which allows for motion control and parameter adaptation of a 

device on the network [11]. It is a common software protocol used in robotics, medical devices and automotive devices. 

It was original designed for motion control of machines and motors. CANopen incorporates a range of new concepts to 

CAN. These include communication models and protocols, states, and an object dictionary.  

The communication model used for the IAV system was designed to follow the Master/Slave approach (Figure 12). One 

node, the main computer, acts as the master and is able to send and request data from slaves, in this case the motor 

controller. There can be 0 to 127 slaves in the standard application.  

 

Figure 12 Master - Slave Tree Model [11] 

Unfortunately, the motor controller purchased does not utilize the speed control loop integrated within it while in slave 

mode. This caused the motor to oscillate in an unstable manner when a command was sent to it. To remedy this, it was 

decided to leave the motor controller in master mode, as the motor functioned in a stable manner in this setting. This is 

discussed further later in this report.  
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 The protocol also uses an object dictionary to store a nodes parameters and variables [11]. An object dictionary (OD) is 

represented as a hexadecimal index, which can be accessed through two message types; a Service Data Object (SDO) 

and a Process Data Object (PDO) [12] [13].  The object dictionary is a series of indexes with corresponding sub-indexes 

that have an associated value, as shown in Figure 13. 

 

Figure 13 Example of a CANopen Object Dictionary [14] 

The standard CANopen CAN message, also referred to as a frame, is composed of a COB-ID, data length indicator, and 

the data [11]. The structure of a CAN Frame is shown in Figure 14. 

 

Figure 14 CANopen Frame Structure [11] 

A COB-ID or Communication Object Identifier is split into two parts; a 4-bit function code and a 7-bit node ID. The 

function code relates to the function the master node would like to commit, while the node ID relates to the slave node 

the function is acting on. Figure 15 summarizes the different types of messages, also known as communication objects, 

CANopen supports. The figure also shows the corresponding COB-ID for that communication object. 



ENGINEERING DESIGN PROJECT REPORT 15 

 

Figure 15 CANopen Communication Objects [11] 

An SDO message can access all the parameters in a node’s object dictionary. There are two types of SDOs; a Transmit 

SDO (TSDO) and Receive SDO (RSDO). The associated COB-IDs for a TSDO and RSDO are 0x580 + Node ID and 

0x600 + Node ID.  

The Transmit SDO message is represented in Figure 16 and the Receive SDO message is represented in Figure 17. 

 

Figure 16 Transmit SDO Message Frame [12] 

 

Figure 17 Receive SDO Message Frame [12] 

The command byte shown in the above figures denotes the type of message being sent, Transmit or Receive, and the 

number of bytes of data contained within that message. This is summarized in Figure 18. 

 

Figure 18 SDO Command Byte Summary [15] 
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Two additional command bytes can be received from a node, these are the acknowledge byte (0x60) and the error byte 

(0x80 + node ID) [12]. OD main-index and OD sub-index describe the object dictionary index and sub-index of the 

parameter the message relates to.  Finally, the last section of an SDO is the data being sent or received. It has a 

maximum size of 4 bytes and is in a hexadecimal format.  

A PDO message is a faster alternative to an SDO message and can send a maximum data length of 8 bytes [13]. 

However, a PDO message only has access to select variables in the object dictionary and must be chosen prior to 

operation. These select variables are mapped to an associated index and sub-index and must be the same on all the 

nodes the PDO message applies to. Similar to an SDO message, there are two types of PDO messages; Transmit PDO 

(TPDO) and Receive PDO (RPDO). 4 of each message (TPDO or RPDO) can be mapped for a single node and is 

summarized in Figure 15.  

Multiple variables can be mapped to one PDO if the total size does not exceed 8 bytes. This is shown in Figure 19 along 

with the associated mapping of the receiving and transmitting nodes. 

 

Figure 19 PDO Message and Associated Mapping [13] 

The mapped values shown under 2nd column in the above figure relate to the index, sub-index, and number of bytes. For 

instance, in the RPDO mapping table, row 1, the mapped value is 54321020. 5432 pertains to the index, 10 pertains to 

the sub-index, and 20 is the hexadecimal representation of 32, for the number of bits that denote the size of the variable 

(First Process Value) being sent.  

SocketCAN 

All the different message types and functions mentioned were written in C++ using simple functions from a library 

called SocketCAN. SocketCAN is the official CAN API of the Linux kernel. SocketCAN offers the user a hardware 

independent socket-based API for CAN based communication and configuration [16]. The library offers functions to 

connect to the CAN-Bus port and send and receive messages from it. Using these functions, the capabilities of 

CANopen were incorporated to allow for communication from the IAV computer to the motor controller. 
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Motor Controller Issues 

As mentioned earlier, it was decided that the motor controller will operate in master-mode, with the computer acting as 

the slave. This was due to the motor not operating in a stable manner while the motor controller was in slave mode as 

the control loop built inside of it was not used. This also affected the use of PDO messages being sent, as the motor 

controller was unable to map new PDO messages while in master mode. Fortunately, the motor does not need to 

receive speed demands at a high frequency and SDO messages were used in place. SDO messages were also used to 

receive the current angular velocity of the motor.  

Although, control of the motor worked in this scenario, there was still an issue of initiating the motor controller and 

putting it into operational state. The motor controller programming software known as Sevcon DVT was able to place 

the motor controller into operational state, and then allow the motor to be controlled from the computer [6]. However, 

once the controller was turned off, it would reset to preoperational state on boot-up. To avoid using the DVT software 

every time, the computer must be able to recreate this initiating process.  

In order to understand how the controller was forced into operational state, all 3 devices; the IAV computer, the motor 

controller, and the laptop containing the DVT software, were connected to the same CAN-Bus line. The IAV computer 

then listened in to the commands being sent from DVT to the motor controller. These commands were recorded and 

recreated using CANopen messages to place the controller into operational state. By doing this, the computer then had 

full control over the motor controller without the need for the DVT software and additional laptop.  

Linear Actuator  

After many design iterations, it was decided that a linear actuator would be the simplest method to control the steering 

of the IAV prototype. Linear actuators have some setbacks with regards to speed and control. Fortunately, a high speed, 

high force linear actuator was chosen. However, the issue of controlling the device still remained, as it is only able to 

extend, retract, or remain stationary. A control loop had to be designed to address this issue.  

Linear Actuator Control Loop 

To solve the issue of controlling the device, the actuator selected must have a sensor, such as a potentiometer, that can 

read the current position of it. Using this reading a feedback control loop was designed to allow for stable operation and 

control. The loop is described in Figure 20.  

 

Figure 20 Linear Actuator Control Loop 
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Beginning from the top of the control loop, the current position of the actuator is read from the potentiometer. The 

potentiometer outputs the position in millivolts with 30 being fully retracted and 930 being fully extended. These values 

can then be used to determine the position of the actuator by linearly interpolating them with the true extension of the 

actuator in meters. Once converted the current position is compared to the target position of the actuator, as shown in 

the second block. An accuracy value had to be added to stabilize the device as the potentiometer reading varies by + or 

– 10 millivolts. Depending on the outcome of this block, the actuator either extends or retracts. The position is read 

again and checked against the target position and continues operation until it is at its desired position. A timeout 

condition was added, in case the actuator gets stuck and is unable to meet its goal. In this scenario, it will exit the loop 

and wait for a new target position.  

 Linear Actuator Communication  

The linear actuator is driven by a motor driver. The motor driver receives commands from an Arduino Uno, which 

receives the potentiometer reading from the linear actuator. The control loop mentioned above, operates on the Arduino 

Uno. Although this system can control the actuator and drive it to a desired position, it still needs to be told when to do 

so. Thus, there must be communication from the IAV computer to the Arduino Uno.  

The Arduino connects to the computer through USB and uses serial communication to send and receive messages. A 

device driver was written in C++ to allow the IAV computer to send a target position and receive a current position 

reading. On the Arduino end, a driver was written to receive a target position and send out the current actuator position. 

By creating these device drivers, the steering of the IAV prototype was then incorporated into the overall IAV system.  

The hierarchy of the steering system is shown in Figure 21. 

 

Figure 21 Linear Actuator System 

Future Work 

The next step, for future students is to begin developing the autonomy of the system. This should be done by integrating 

GPS waypoint following into the system. Once this has been done, object and obstacle detection should be integrated. 

Slowly these features will build upon each other to achieve higher autonomy. With regards to the topics highlighted in 

this report, more work also needs to be done. 

Simulator  

As mentioned earlier the simulator needs to be updated to better represent the real buggy. Ackermann steering needs to 

be added to properly represent the controls and motion of the vehicle. The friction coefficient needs to be adjusted to 

model a real environment. Additionally, the buggy CAD model needs to be updated to properly represent the redesigned 

vehicle.  

System Network  

The LCM Network is mostly complete. New messages can be made when needed in the future years. The software 

related to the network and the overall system is available to future years, for them to incorporate into their programs. 

Commenting of each function is still required and some classes need to be improved.  
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Software System Architecture 

Parts of the software system still needs to be developed; this relies heavily on future years developing all the mentioned 

components. The Sensor Manager and Motor Manager components, as well as most of the device drivers have been 

completed. Following the designed system will ease development for future years. 

Control System 

As mentioned above, software components such as the Map Manager, Trajectory Planner, Path Follower, Lane 

Correction, Vision Subsystem, and Pose Estimator must be developed properly in order to function the vehicle in higher 

autonomy. The Vehicle controller has been partly completed but will need to be changed as the other components are 

integrated.  

Device Drivers  

The motor controller times out if left too long without a speed input other than 0. This should be addressed in future 

years. The linear actuator control is slightly delayed and can be approved upon further by adding the control loop to the 

IAV computer and removing the Arduino Uno from the system. To do this the IAV pins need to be adjusted and an 

analog to digital converter (ADC) is required to read the actuator position from the potentiometer.  

IAV Computer 

The IAV computer must be shutdown in a safe manner, by typing “sudo shutdown now” in a terminal or clicking 

shutdown through the graphical user interface. A proper shutdown circuit should be designed in the scenario where 

power is lost to the computer. This is further discussed in the Nvidia Driver Xavier Manual [7]. 

Conclusion  

Although the vehicle didn’t achieve autonomy this year, the system built will act as a very good foundation for future 

years to build upon. Currently, the system can read all of the data produced from the sensors as well as control and 

actuate the motor and linear actuator. The vehicle can also be controlled through a joystick.  

 

 

 

 

 

 

 

 



ENGINEERING DESIGN PROJECT REPORT 20 

 

 

 

 

 

 

 

 

This page was intentionally left blank 

 

 

 

 

 

 

 

 

 



ENGINEERING DESIGN PROJECT REPORT 21 

 

References 

 

[1]  "What is Software Integration," 2018. [Online]. Available: 

https://whatis.ciowhitepapersreview.com/definition/software-integration/. [Accessed 09 04 2019]. 

[2]  "Webots," Cyberbotics, 2019. [Online]. Available: https://cyberbotics.com/. [Accessed 10 04 2019]. 

[3]  "Lightweight Communications and Marshalling (LCM)," [Online]. Available: https://lcm-proj.github.io/. 

[Accessed 10 04 2019]. 

[4]  M. Rouse, "device driver," Tech Target, 03 2019. [Online]. Available: 

https://searchenterprisedesktop.techtarget.com/definition/device-driver. [Accessed 09 04 2019]. 

[5]  "ME1114," Motenergy, 2019. [Online]. Available: http://motenergy.com/me1114.html. [Accessed 10 04 2018]. 

[6]  "Sevcon Gen 4," Sevcon, 2019. [Online]. Available: http://www.sevcon.com/products/low-voltage-

controllers/gen4-dc/. [Accessed 10 04 2019]. 

[7]  "Drive AGX," Nvidia, 2019. [Online]. Available: https://www.nvidia.com/en-us/self-driving-cars/drive-

platform/hardware/. [Accessed 10 04 2019]. 

[8]  "CAN Bus Explained," CSS Electronics , 2019. [Online]. Available: 

https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en. [Accessed 09 04 2019]. 

[9]  "Automotive bus technologies," 24 10 2016. [Online]. Available: 

https://www.slideshare.net/RadwaTarek7/automotive-bus-technologies. [Accessed 10 04 2019]. 

[10]  R. Nabati, "Enabling CAN on Nvidia Jetson Xavier Developer Kit," Medium, 08 11 2018. [Online]. Available: 

https://medium.com/@ramin.nabati/enabling-can-on-nvidia-jetson-xavier-developer-kit-aaaa3c4d99c9. [Accessed 

10 04 2019]. 

[11]  "CANOPEN EXPLAINED - A SIMPLE INTRO (2019)," CSS Electronics, 2019. [Online]. Available: 

https://www.csselectronics.com/screen/page/canopen-tutorial-simple-intro/language/en. [Accessed 10 04 2019]. 

[12]  "Device Configuration via SDOs," CAN open Solutions , [Online]. Available: 

https://www.canopensolutions.com/english/about_canopen/device_configuration_canopen.shtml. [Accessed 10 

04 2019]. 



ENGINEERING DESIGN PROJECT REPORT 22 

[13]  "Process data exchange with PDOs ("Process Data Objects")," CAN open Solutions, [Online]. Available: 

https://www.canopensolutions.com/english/about_canopen/pdo.shtml. [Accessed 10 04 2019]. 

[14]  "The Basics of CANopen," National Instruments , 19 03 2019. [Online]. Available: http://www.ni.com/en-

ca/innovations/white-papers/13/the-basics-of-canopen.html. [Accessed 10 04 2019]. 

[15]  RobinC, "SDO – Service Data Objects – CanOpen," Byte Me, 07 11 2015. [Online]. Available: 

http://www.byteme.org.uk/canopenparent/canopen/sdo-service-data-objects-canopen/. [Accessed 10 04 2019]. 

[16]  M. Kleine-Budde, "SocketCAN - The official CAN API of the Linux kernel," CAN CIA, 2012. [Online]. Available: 

https://www.can-cia.org/fileadmin/resources/documents/proceedings/2012_kleine-budde.pdf. [Accessed 10 04 

2019]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ENGINEERING DESIGN PROJECT REPORT 23 

Additional Work 

A lot of additional work was put into the project this year to determine the progression and structure of the project. 

Additionally, tasks had to be assigned to each group member to continue development and keep everyone busy. In this 

sense, I took on a project management role within the project group.  

Some of the additional tasks done the semester were:  

• Wrote the GPS Driver 

• Implemented the Joystick Driver into the system 

• Picked and assisted in the selection of sensors and other components for the vehicle  

o Lidar, Cameras, GPS, Computer 

o Assisted Hadi with motor and motor controller selection  

o Assisted Tarek with linear actuator and motor driver selection 

• Assisted a lot of other project members with their responsibilities when it came to software  

o Assisted Gareth with implementing Lidar cluster algorithm 

o Assisted Adonis with implementing lane detection algorithm 

o Assisted Ryan with EKF implementation and control system implementation  

o Assisted Jia with machine learning 

o Assisted Chris with ZED driver (just a little)  

o Assisted Shanshui with position fusion and GPS driver use 

o Assisted Jiacun with route planning  

o Assisted Tarek with the linear actuator Arduino code  

o Assisted Aslam with the joystick driver  

• Assisted with the design of the overall system (hardware and software)  

• Assigned tasks to each member of the project 

• Organized meetings outside of class to plan the project 

• Organized a meeting with the project professors and TA (fall semester) 

• Wrote software tutorials for all the group members 

• Software Lead for the IAV club 

o Organized tasks for the software volunteers 

o Met up every week to work on tasks 

o Organized a guest speaker 

• Created and designed project website (iav.mae.carleton.ca)  

• Assisted Aslam with sponsorship and fundraising  

• Designed project logo (as seen in title page) 

• Created Github for project  

• Create Linux Virutal Machine (VM) for group members 

• Assisted Matt with wiring the sensors and components to the vehicle, and the electrical diagram 

• Worked with Hadi to wire up the motor controller and batteries  

• Created Control loop for the motor controller  

• Created utilities to test the motor controller and linear actuator  
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Appendix 

All the software pertaining to the project can be found on my Github: https://github.com/LiamGritters/IAV  

C++ was chosen as the programming language to develop all the IAV software as it is commonly used in robotics and 

has multiple libraries to support it. Additionally, the software was all developed on a Linux device running Ubuntu 16.04. 

The IAV computer also runs Linux, with Ubuntu 18.04.  

If any questions arise from the software developed from this year, please do not hesitate to contact me at 

liam.gritters@gmail.com or through my github repository by creating an Issue. 

Best of luck to future years! 
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