
Undergraduate Directed Studies – Carleton University

Date of Submission: Wednesday, April 10, 2019

1

Goal-Directed Obstacle Avoidance Using Neural Network
MAAE 4917 Undergraduate Directed Studies Report – Winter 2019

Liam Gritters 100976928

liamgritters@cmail.carleton.ca

Alex Ellery

Alex.Ellery@carleton.ca

A series of neural networks are characterized to implement rover navigation and demonstrate a sophisticated task central

to the realization of self-sufficient in-situ resource utilization. The neural network architecture follows that of a multilayer

perceptron (MLP) with three layers. The network was trained within a simulator in which the user could command a

simple two-wheeled robot to navigate through obstacles to a destination. The network was continuously fed three distance

sensor values and a destination represented by the radius and heading from its initial state. The network outputs a direction

in which it should move dependent on its current situation.

1 Introduction
The exploration beyond the extraction of

water and oxygen from lunar and asteroid

resources proposed in most in-situ resource

utilization schemes is not often sought after. In

particular, the construction of electronic

computing devices from lunar resources in a

manner that does not require the stringent

manufacturing methods of solid-state electronics

is explored. Lunar resources can be exploited to

create thermionic vacuum tubes as a substitute for

discrete transistors. These devices may be

composed of fused silica glass encapsulation

(from lunar anorthite), aluminum (from lunar

anorthite), Kovar wiring (from nickel-iron

meteorites), tungsten filament cathodes (from

nickel-iron meteorites) coated with calcium oxide

(from anorthite), and nickel anodes and control

grids (from nickel-iron meteorites) [1]. Rather

than constructing traditional CPU-based

architectures with these bulky vacuum tubes,

more compact neural network circuits based on

analogue neurons is proposed. Neural networks

are Turing-complete as they are able to recognize

or decide data-manipulation rule sets [2]. In order

to explore this possibility, a series of analogue

neural networks are characterized to implement

rover navigation and demonstrate such circuits

conducting a sophisticated task central to the

realization of self-sufficient in-situ resource

utilization. This paper focuses on the software

neural network that will implement this rover

navigation.

2 Multilayer Perceptron
The type of neural network used for

navigation and obstacle avoidance was a

multilayer perceptron.

A perceptron is a single neuron model

that acts as a precursor to larger neural networks.

A neuron is the building block of neural networks

and are simple computational units that have a

weighted input signal and produce an output

signal [3]. In this standard model, multiple inputs

are multiplied by weight values and are summed

together as shown in Figure 1.

The weighted sum produced passes through an

activation function which applies non-linearity to

the neural network. Non-linearities help model

more complex systems and by having multiple

neurons in series, higher order systems can be

replicated [4]. The output of a neuron is described

by Equation (1), where 𝑦𝑘 represents the output

at k, 𝜑 is the activation function, 𝑤𝑘𝑗 is the weight

between k and j, 𝑥𝑗 is the input, and 𝑏𝑘 is the bias.

𝑦𝑘 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑚
𝑗=0 𝑏𝑘) (1)

Figure 1: Neuron Diagram

mailto:liamgritters@cmail.carleton.ca
mailto:Alex.Ellery@carleton.ca

Undergraduate Directed Studies – Carleton University

Date of Submission: Wednesday, April 10, 2019

2

In a multilayer perceptron model,

neurons are arranged into a network with multiple

rows in series as shown in Figure 2.

A row of neurons is called a layer with

the first layer referred to as the input layer which

receives data into the network and the last layer

referred to as the output layer which yields a

prediction. The layers in between both of these

layers are called the hidden layers because they

are not directly exposed to the input or output [3].

The network is fed data and calculates a

classification. The classification is tuned to more

accurately label the data through the training

phase by inputting labelled data into the network

and adjusting the weight values using the

backpropagation training algorithm. The

improved weight value is calculated using

Equation (2).

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝛼
𝜕𝐸(𝑦,𝜃(𝑡))

𝜕𝜃
 (2)

Where θ is the weights and biases, α is the

learning rate, y is the output, and 𝜕𝐸(𝑦, 𝜃(𝑡)) is

the error function with respect to the weights and

biases. The error function used in the network is

the Softmax-Loss function and can be calculated

from Equation (3).

𝐸(𝑦, 𝜃(𝑡)) = 𝑙𝑜𝑔(∑ 𝑒𝜃𝑗𝑚
𝑗=1) − 𝜃𝑦 (3)

3 Architecture Design
The architecture of the network is also

referred to as the network topology [5]. The

design of the neural network trained for goal-

directed obstacle avoidance consisted of two

hidden layers.

The input layer receives 5 input values

consisting of three distance sensor values, a

radius to goal distance, and an angle to goal value

in radians. The three distance sensor values are

normalized by the max sensing distance, which is

then subtracted from 1.0 as shown in Equation

(4).

𝑆𝑒𝑛𝑠𝑜𝑟 𝐼𝑛𝑝𝑢𝑡 = 1.0 −
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (4)

This represents the percent of an object sensed

with respect to the rover and improves training of

the network as zero input values are less likely.

The angle to goal input is also normalized by

a value of pi, with a forward direction expressed

as 0°, a right-angle direction expressed as +90°

and a left-angle direction expressed as -90°. The

radius to goal input is normalized by the initial

value, and as the robot approaches the goal this

input shrinks to zero. Thus, the input represents

the distance, in terms of percent, to the goal.

This data is then passed to the first hidden

layer which consists of 4 neurons. The initial

random weight values in the network are

generated using a method called Xavier Weight

Initialization. This method improves the

convergence of the network by limiting the range

of the randomly generated values [6]. Doing so,

keeps the variance the same between each layer

and prevents the signal from exploding to a high

value or vanishing to zero as it passes through the

network. The variance for the Xavier

Initialization formula can be calculated from

Equation (5), where w represents the weights and

N represents the number of neurons in the input

and output.

𝑉𝑎𝑟(𝑤) =
2

𝑁𝑖𝑛+𝑁𝑜𝑢𝑡
 (5)

The activation function used within this

network is a sigmoid function which is shown in

Equation (6).

𝜑(𝑥) =
1

1+𝑒−𝑥 (6)

The data passes through a second hidden

layer which also has 4 neurons and is modelled

the same as the first hidden layer.

The modified data is then outputted to the

output layer which classifies the direction the

robot should move given its current scenario as

described by the input data. There are four actions

that are classified and used to control the

movement robot; forward, left, right, and stop.

The actions are classified using the SoftMax

function shown in Equation (7).

Figure 2: Multilayer Perceptron Network Example [5]

Undergraduate Directed Studies – Carleton University

Date of Submission: Wednesday, April 10, 2019

3

𝜎(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝑘 (7)

4 Implementation
The robot was modelled in a robotic

software program called Webots. It comprises 3

distance sensors with a max distance of 100 cm.

The left sensor and right sensor are angled -5° and

+5° from the center line of the robot. The robot

consists of 2 differential wheels and a front cast

wheel as shown in Figure 3.

Figure 3: Robot Simulation Model

The turning rate of the robot is 5° per turning

command. Decreasing this rate from 8° per

turning command to 5° improved the robot’s

navigation through obstacles as more information

was processed between commands.

 The simulated world consists of randomly

generated objects in the shape of cylinders,

spheres, and rectangles. The world is 5x10 meters

in size as shown in Error! Reference source not

found..

Encoder noise and distance sensor noise is

also incorporated into the simulator through a

gaussian noise generating function [7].

5 Training
Initially the training data was generated by

manually driving the network through the

simulated world to the destination. However, this

generated an imbalance in the training data as the

majority of the time the robot was directed to

move forward. To remedy this, a data generation

tool was created which randomly generated

sensor distance values within 100 cm and a goal

within 10 meters. The user than provided a

direction the robot should move given the

randomly generated scenario. The display of the

data generation tool is shown in Figure 5. The

white lines represent the distant sensors and the

grey circle represents the goal the robot is

attempting to navigate to.

This training data was more balanced and

provided more instances of difficult situations.

Figure 5: Display of Data Generation Tool

6 Next Steps
Now that the neural network model has been

trained and tested within a virtual simulation, it

needs to be constructed as an analog neural

network and tested in reality. More research is

still required in order to achieve this goal.
Figure 4: Simulated World

Undergraduate Directed Studies – Carleton University

Date of Submission: Wednesday, April 10, 2019

4

7 Conclusion
A multilayer perceptron neural network was

trained to navigate through obstacles to a

specified goal. This was achieved with 3 layers,

two of which are hidden layers with 4 neurons.

The network was successfully tested in a

virtual simulator given different goals

represented as a radius and angle.

Further work must be done to recreate this

network in reality and model the weights in an

analog circuit. By doing so, the neural network

could then, in theory, be constructed on the moon

using only the resources there. Further research

can also be conducted on training the analog

neural networks without the use of software.

References

[1] A. Ellery, "Extraterrestrial 3D printing & in-situ resource utilisation to sidestep launch costs," JBIS - Journal of the British

Interplanetary Society, vol. 70, pp. 337-343, 2017.

[2] "Turing Complete," 21 11 2014. [Online]. Available: http://wiki.c2.com/?TuringComplete. [Accessed 20 04 2019].

[3] J. Brownlee, "Crash Course On Multi-Layer Perceptron Neural Networks," Machine Learning Mastery, 12 05 2016. [Online].

Available: https://machinelearningmastery.com/neural-networks-crash-course/. [Accessed 20 04 2019].

[4] A. S. Walia, "Activation functions and it’s types," Towards Data Science , 29 05 2017. [Online]. Available:

https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f. [Accessed 21 04 2019].

[5] G. Zaccone, "Multi Layer Perceptron," O'Reilly, [Online]. Available: https://www.oreilly.com/library/view/getting-started-

with/9781786468574/ch04s04.html. [Accessed 20 04 2019].

[6] P. Remy, "Xavier Initialization," 21 03 2016. [Online]. Available: http://philipperemy.github.io/xavier-initialization/.

[Accessed 19 04 2019].

[7] "Webots Reference Manual," Cyberbotics, 2019. [Online]. Available:

https://www.cyberbotics.com/doc/reference/positionsensor. [Accessed 19 04 2019].

