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A series of neural networks are characterized to implement rover navigation and demonstrate a sophisticated task central 

to the realization of self-sufficient in-situ resource utilization. The neural network architecture follows that of a multilayer 

perceptron (MLP) with three layers.  The network was trained within a simulator in which the user could command a 

simple two-wheeled robot to navigate through obstacles to a destination. The network was continuously fed three distance 

sensor values and a destination represented by the radius and heading from its initial state. The network outputs a direction 

in which it should move dependent on its current situation. 

1 Introduction 
The exploration beyond the extraction of 

water and oxygen from lunar and asteroid 

resources proposed in most in-situ resource 

utilization schemes is not often sought after. In 

particular, the construction of electronic 

computing devices from lunar resources in a 

manner that does not require the stringent 

manufacturing methods of solid-state electronics 

is explored. Lunar resources can be exploited to 

create thermionic vacuum tubes as a substitute for 

discrete transistors. These devices may be 

composed of fused silica glass encapsulation 

(from lunar anorthite), aluminum (from lunar 

anorthite), Kovar wiring (from nickel-iron 

meteorites), tungsten filament cathodes (from 

nickel-iron meteorites) coated with calcium oxide 

(from anorthite), and nickel anodes and control 

grids (from nickel-iron meteorites) [1]. Rather 

than constructing traditional CPU-based 

architectures with these bulky vacuum tubes, 

more compact neural network circuits based on 

analogue neurons is proposed. Neural networks 

are Turing-complete as they are able to recognize 

or decide data-manipulation rule sets [2].  In order 

to explore this possibility, a series of analogue 

neural networks are characterized to implement 

rover navigation and demonstrate such circuits 

conducting a sophisticated task central to the 

realization of self-sufficient in-situ resource 

utilization. This paper focuses on the software 

neural network that will implement this rover 

navigation. 

2 Multilayer Perceptron 
The type of neural network used for 

navigation and obstacle avoidance was a 

multilayer perceptron.  

A perceptron is a single neuron model 

that acts as a precursor to larger neural networks. 

A neuron is the building block of neural networks 

and are simple computational units that have a 

weighted input signal and produce an output 

signal [3]. In this standard model, multiple inputs 

are multiplied by weight values and are summed 

together as shown in Figure 1. 

The weighted sum produced passes through an 

activation function which applies non-linearity to 

the neural network. Non-linearities help model 

more complex systems and by having multiple 

neurons in series, higher order systems can be 

replicated [4]. The output of a neuron is described 

by Equation (1), where 𝑦𝑘 represents the output 

at k, 𝜑 is the activation function, 𝑤𝑘𝑗 is the weight 

between k and j, 𝑥𝑗 is the input, and 𝑏𝑘 is the bias. 

𝑦𝑘 =  𝜑(∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑚
𝑗=0 𝑏𝑘)              ( 1 ) 

Figure 1: Neuron Diagram 
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In a multilayer perceptron model, 

neurons are arranged into a network with multiple 

rows in series as shown in Figure 2. 

A row of neurons is called a layer with 

the first layer referred to as the input layer which 

receives data into the network and the last layer 

referred to as the output layer which yields a 

prediction.  The layers in between both of these 

layers are called the hidden layers because they 

are not directly exposed to the input or output [3].  

The network is fed data and calculates a 

classification.  The classification is tuned to more 

accurately label the data through the training 

phase by inputting labelled data into the network 

and adjusting the weight values using the 

backpropagation training algorithm. The 

improved weight value is calculated using 

Equation (2).  

𝜃(𝑡 + 1) = 𝜃(𝑡) −  𝛼
𝜕𝐸(𝑦,𝜃(𝑡))

𝜕𝜃
        ( 2 ) 

Where θ is the weights and biases, α is the 

learning rate, y is the output, and 𝜕𝐸(𝑦, 𝜃(𝑡)) is 

the error function with respect to the weights and 

biases. The error function used in the network is 

the Softmax-Loss function and can be calculated 

from Equation (3).  

𝐸(𝑦, 𝜃(𝑡)) = 𝑙𝑜𝑔(∑ 𝑒𝜃𝑗𝑚
𝑗=1 ) −  𝜃𝑦     ( 3 ) 

3 Architecture Design 
The architecture of the network is also 

referred to as the network topology [5]. The 

design of the neural network trained for goal-

directed obstacle avoidance consisted of two 

hidden layers. 

The input layer receives 5 input values 

consisting of three distance sensor values, a 

radius to goal distance, and an angle to goal value 

in radians.  The three distance sensor values are 

normalized by the max sensing distance, which is 

then subtracted from 1.0 as shown in Equation 

(4). 

𝑆𝑒𝑛𝑠𝑜𝑟 𝐼𝑛𝑝𝑢𝑡 = 1.0 −  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
     ( 4 ) 

This represents the percent of an object sensed 

with respect to the rover and improves training of 

the network as zero input values are less likely. 

The angle to goal input is also normalized by 

a value of pi, with a forward direction expressed 

as 0°, a right-angle direction expressed as +90° 

and a left-angle direction expressed as -90°. The 

radius to goal input is normalized by the initial 

value, and as the robot approaches the goal this 

input shrinks to zero. Thus, the input represents 

the distance, in terms of percent, to the goal.  

This data is then passed to the first hidden 

layer which consists of 4 neurons. The initial 

random weight values in the network are 

generated using a method called Xavier Weight 

Initialization. This method improves the 

convergence of the network by limiting the range 

of the randomly generated values [6]. Doing so, 

keeps the variance the same between each layer 

and prevents the signal from exploding to a high 

value or vanishing to zero as it passes through the 

network. The variance for the Xavier 

Initialization formula can be calculated from 

Equation (5), where w represents the weights and 

N represents the number of neurons in the input 

and output. 

𝑉𝑎𝑟(𝑤) =  
2

𝑁𝑖𝑛+𝑁𝑜𝑢𝑡
               ( 5 ) 

The activation function used within this 

network is a sigmoid function which is shown in 

Equation (6).  

𝜑(𝑥) =  
1

1+𝑒−𝑥                       ( 6 ) 

The data passes through a second hidden 

layer which also has 4 neurons and is modelled 

the same as the first hidden layer.  

The modified data is then outputted to the 

output layer which classifies the direction the 

robot should move given its current scenario as 

described by the input data. There are four actions 

that are classified and used to control the 

movement robot; forward, left, right, and stop. 

The actions are classified using the SoftMax 

function shown in Equation (7).  

Figure 2: Multilayer Perceptron Network Example [5] 
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𝜎(𝑥)𝑖 =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑘

𝑗=1

 𝑓𝑜𝑟 𝑖 =  1, … , 𝑘       ( 7 ) 

4 Implementation 
The robot was modelled in a robotic 

software program called Webots. It comprises 3 

distance sensors with a max distance of 100 cm. 

The left sensor and right sensor are angled -5° and 

+5° from the center line of the robot. The robot 

consists of 2 differential wheels and a front cast 

wheel as shown in Figure 3.  

 

 
Figure 3: Robot Simulation Model 

The turning rate of the robot is 5° per turning 

command. Decreasing this rate from 8° per 

turning command to 5° improved the robot’s 

navigation through obstacles as more information 

was processed between commands.  

 The simulated world consists of randomly 

generated objects in the shape of cylinders, 

spheres, and rectangles. The world is 5x10 meters 

in size as shown in Error! Reference source not 

found.. 

Encoder noise and distance sensor noise is 

also incorporated into the simulator through a 

gaussian noise generating function [7]. 

5 Training  
Initially the training data was generated by 

manually driving the network through the 

simulated world to the destination. However, this 

generated an imbalance in the training data as the 

majority of the time the robot was directed to 

move forward. To remedy this, a data generation 

tool was created which randomly generated 

sensor distance values within 100 cm and a goal 

within 10 meters.  The user than provided a 

direction the robot should move given the 

randomly generated scenario. The display of the 

data generation tool is shown in Figure 5. The 

white lines represent the distant sensors and the 

grey circle represents the goal the robot is 

attempting to navigate to. 

This training data was more balanced and 

provided more instances of difficult situations. 

 

 
Figure 5: Display of Data Generation Tool 

6 Next Steps 
Now that the neural network model has been 

trained and tested within a virtual simulation, it 

needs to be constructed as an analog neural 

network and tested in reality. More research is 

still required in order to achieve this goal.  
Figure 4: Simulated World 
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7 Conclusion 
A multilayer perceptron neural network was 

trained to navigate through obstacles to a 

specified goal. This was achieved with 3 layers, 

two of which are hidden layers with 4 neurons. 

The network was successfully tested in a 

virtual simulator given different goals 

represented as a radius and angle. 

Further work must be done to recreate this 

network in reality and model the weights in an 

analog circuit. By doing so, the neural network 

could then, in theory, be constructed on the moon 

using only the resources there. Further research 

can also be conducted on training the analog 

neural networks without the use of software. 

 

 

References 
 

[1]  A. Ellery, "Extraterrestrial 3D printing & in-situ resource utilisation to sidestep launch costs," JBIS - Journal of the British 

Interplanetary Society, vol. 70, pp. 337-343, 2017.  

[2]  "Turing Complete," 21 11 2014. [Online]. Available: http://wiki.c2.com/?TuringComplete. [Accessed 20 04 2019]. 

[3]  J. Brownlee, "Crash Course On Multi-Layer Perceptron Neural Networks," Machine Learning Mastery, 12 05 2016. [Online]. 

Available: https://machinelearningmastery.com/neural-networks-crash-course/. [Accessed 20 04 2019]. 

[4]  A. S. Walia, "Activation functions and it’s types," Towards Data Science , 29 05 2017. [Online]. Available: 

https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f. [Accessed 21 04 2019]. 

[5]  G. Zaccone, "Multi Layer Perceptron," O'Reilly, [Online]. Available: https://www.oreilly.com/library/view/getting-started-

with/9781786468574/ch04s04.html. [Accessed 20 04 2019]. 

[6]  P. Remy, "Xavier Initialization," 21 03 2016. [Online]. Available: http://philipperemy.github.io/xavier-initialization/. 

[Accessed 19 04 2019]. 

[7]  "Webots Reference Manual," Cyberbotics, 2019. [Online]. Available: 

https://www.cyberbotics.com/doc/reference/positionsensor. [Accessed 19 04 2019]. 

 

 

 


